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ABSTRACT

In this paper, a theorem of J. L. Walsh, on differences of polynomials
interpolating in the roots of unity and in the origin, is extended to
differences of rational functions interpolating in more general sets. The

original result of Walsh cai-.be describedas follows. Given any function

f(z) = [ a z analytic in the disk Izi < p , where 1 < p < , let
j=0

pn (z;f) be the unique polynomial interpolant of f(z) in the (n+l)-st roots
n

of unity, and let P (z;f) ajz , for every nonnegative integer n
j=0

Then Walsh's result is that
2

lim (p n(z;f) - Pn (z;f)} = 0 , for all Izi < p
n nn

It is this overconvergence to zero, beyond the disk Izi < p of analyticity
of f(z), which is intriguing.

Our generalization of Walsh's theorem is in two directions. First, we
show that an analogous overconvergence holds for differences of rational
interpolants to meromorphic functions F(z). Second, we show that the
defining interpolation points can be considerably more general than the roots
of unity and the origin. Finally, several concrete examples of our
generalization are given, one consisting in applications of Faber polynomials.
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SIGNIFICANCE AND EXPLANATION

If F(z) = I a.zj is analytic in the disk Izi < p , where
j=O I

1 < p < , then f(z) is well-defined at z = 0 and on Izi = 1

Thus, for each nonnegative integer n , there is a unique polynomial

Pn(Z;f), of degree at most n , which interpolates f(z) in the (n+1)-st

roots of unity, i.e.,

n+1
p n(w;f) = f(w), for any w with 1 = 1

n J

and there is also a unique polynomial P n(z;f) = ajz , the n-th partial
j=0

sum of f(z), which interpolates f(z) in the origin. Professor J. L. Walsh

showed that
2

(1) lim {pn(z;f) - Pn (z;f)} = 0 , for any z with Ijz < p

What is both surprising and intriguing is that this convergence to zero takes

place in a region larger than the disk of analyticity, IzI < p , of f(z).

Our main result is to show that Walsh's result (1) can be extended to

rational interpolants of functions meromorphic in Izi < p , the points of

interpolation being more general than the roots of unity and the origin. It

is also shown that, like Walsh's result (1), this extension is best possible- -

in a certain sense. - "

e: 4

The responsibility for the wordinq and vi.ews expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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An Extension to Rational Functions of a Theorem of

J. L. Walsh on Differences of Interpolating Polynomials

E. B. Saff I , A. Sharma, and R. S. Varga2

§1. Introduction.

Our main purpose is to generalize, to the rational case, a well-known

and beautiful result of J. L. Walsh on the convergence of differences of

interpolating polynomials. To state this result, we first introduce some

needed notation.

Let A denote the set of functions f(z) analytic in the disk
p

Iz! < p, where we assume that 1 < p < -. With TT denoting the set of allm

complex polynomials of degree at most m, let p (z; f) E Tr be the Lagrange
n n

polynomial interpolant of f(z) E A in the (n + l)-st roots of unity, i.e.,

(1.1) pn(w; f) = f(w), V w such that w nv I

for each nonnegative integer n. Writing f(z) = a z] for Izl < p, we
J=O 

j

let

n

Pn(Z; f) := Z __a jzi

j=Oj

be the associated n-th partial sum of'f, so that

(1.2) P (z; f) - f(Z) = O(z n+l), as z- 0.n

iResearch supported in part by the National Science FoundaLion under Grant
No. MCS80-03185.

2Research supported in part by the Air Force Office of Scientific Research

Grant No. AFOSR80-0026, and by the Department of Energy Grant No. DE-AS02-
76ER02075.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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Letting

(1.3) DT:. z E :zl <T) and BT:-z E C : lzj

then this particular result of Walsh [7; 8, p. 153) can be stated as

Theorem A. If f E A p, then the interpolating polynomials pn (z) of (1.1)

and P (z) of (1.2) satisfy

(1.4) lim pn (z; f) - Pn(z; f) 0, Y j < P
n-.Cm

the convergence being uniform and geometric on any closed subset of D 2"
pMore precisely, on any closed subset ) of any D with p _ T < -, there

holds

(1.5) lim sup~max lpn(z; f) - Pn(z; f) 1/n <

n -. z n n p -

Furthermore, the result of (1.4) is best possible in the sense that there

is some ?(z) E A and some ^ with -  p2 for which p f) - P f)

does not tend to zero as n

In a recent paper, Cavaretta, Sharma, and Varga [2) give several

generalizations of Theorem A for the case of polynomial interpolation.

Our present goal is to extend some of these results to differences of

rational functions which interpolate a meromorphic function. Although

our main result (cf. Theorem 2.1) deals with more general interpolation

schemes and their associated geometries, we first state, for purposes of

illustration, our extension of Theorem A where the interpolation points

are again the roots of unity and the origin.

For notation, for each nonnegative integer v and for each p, with

1 < P < -, let M (v) denote the set of functions F(z) which are meromorphic

with precisely v poles (counting multiplicity) in the disk Dp, and which



are analytic -,t z - 0 and on IzI- 1. Given F 'S M P (V), consider the

rational interpolant

(1.6) S (z; F) -S (z) U (z)/V (z), with U ErrT, V E
n,v n,V n,v n,V n,v n n , V

of type (n, v) of F(z) which, in analogy with (1.1), is to satisfy

(1.7) Sn, (W) - F(W), Y W such that W n+V+1 . 1

Similarly, consider the Pade rational interpolant (cf. Baker [ll, Perron

(1.8) R ,(z; F) -R (z) -P (z)/%n~(z), with Pnv E 'T. n%'v E TT
n V nV n,v n

of type (n, v) of F(z) which, in analogy with (1.2), is to satisfy

(1.9) Rnv(z) - F(z) O(nV ),as z -.0.

(We assume here and throughout Athe denominator polynomials Vv() z

of (1.6) and (1.8) are normalized so as to be manic.)

It is important to note that the existence and uniqueness of the

rational interpolants S (z) and R (z) of (1.7) and (1.9) are, for alln,v n, v

n large, guaranteed by a theorem of Montessus de Ballore 1 and its

generalization due to Saff [5]; this latter result is stated in *2 as

Theorem B.

With the above notation, we shall prove in §3 the result of

Theorem 1.1. If F E M (v), and if (at~ are the v poles ojf F in D

(listed according to multiplicities), then the rational interpolants S

of (1.7) and Rnv of (1.9) satisfy

V
(1.10) lim [S~n (z; F) R Rn(z ; F)J=0, V z E D X U fcc,

ne V nJ1P



the convergence being uniform and geometric on any closed subset of

D 2\ U f t}" More precisely, .n any closed subset A of any D, U []
P iml j-l J

with p :5 T < -, there holds

(1.11) lim sup {mx lsn(z; F) - Rn,,.(z; P)l1/n M

n - PzE P

The result of (1.10) is best possible in the sense that, for any v , and

and for any p with 1 < p < -, there is an FV E Mp (v) such that

(1.12) lim sup min 2ISn,v (z; F ) - R n,(z; FV)lI > 0.n- I1"P 2

We remark that the special case v - 0 of Theorem 1.1 reduces to

Walsh's Theorem A. We further note that the sharpness result (1.12) of

Theorem 1.1 generalizes the corresponding result for v = 0 of Cavaretta,

* Sharma, and Varga [2].

Concerning the behavior of the (monic) denominator polynomials of

the rational interpolants S (z; F) and R (z; F) of Theorem 1.1, itnv U,v

is known from Saff's Theorem B (cf. 02) that

V
lim V n,V(z) = lim 0q V(z) - B(z):- f (z - ct), V z E C,
n- c n-- OD J=I

and, moreover, as a special case of (2.22), that on each compact set 3 C C,

(1.13) li sup {maxIV ,(z)-B(z)l 1l/n 5  max (1, aIl )]/P,
n-m zEn""" ',',

and

lim sup (max-< -B(z)l1 C m 1ciJ'

(1.14) n3 and (1.1n) 1/n

Clearly, (1.13) and (1.14) together imply
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(1.15) lrn sup (max IV (z) - Q (z) 1/n 5[ max (1, lael)]IP.
n -- O zEU4 i=l, v

But, as a special case of Corollary 2.4, we can improve (1.15) by means of

Corollary 1.2. With the assumptions of Theorem 1.1, there holds on every

compact set N C C

(1.16) limn 'sup (max (z) - Q (z) 1j / n < < .
n~' ZE3 n~v n, v

The outline of the present paper is as follows. In §2, we state and

prove our main results for general interpolation schemes, and in §3 we

consider some specific applications of these results.

§2. Main Results.

Our aim is to extend Theorem A in two directions. First, we wish

to consider triangular interpolation schemes that are associated with

planar sets more general than that of the disk. Second, we shall

replace polynomial interpolation to analytic functions by certain types

of rational interpolation to meromorphic functions.

For these purposes, let E be a closed bounded point set in the z-plane

whose complement K (with respect to the extended plane) is connected and

regular in the sense that K possesses a Green's function G(z) with pole

at infinity (cf. [8, p. 65)). Let r , for a > 1, denote generically,

the locus

(2.1) r := [z E : G(z) = log a),

and denote by E the interior of ra.

Next, for each nonnegative integer v, and for each p, with 1 < P <

let M(E P; v) denote the set of functions F(z) which are analytic on E and

L p
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meromorphic with precisely v poles (counting multiplicity) in the open set

E . For F E M(E p; v), we consider rational interpolation in the two

triangular schemes

(0) (0)

1 '22

(2.2) . . . . . . (2.3) . . . . . .

(n) (n) (n) n)(n)1 B2 '"' n+l 1 2 "n+1

where we assume that no limits points of the tableaus in (2.2) or (2.3),

lie exterior to E. To be specific, we let r n,V(z) be the rational

function of the form

Pn (z)

(2.4) r (z; F) = r W=(z) n,v P E n q E T, q monic,
n,v n,v q ,(z)' n,v n' n'v v n,v

which interpolates F(z) in the n + v + 1 points [,in+ v ) i + +l, i.e.,

(2 ) n~ ((n +v)) F (n +
(2.5) r n(S ) = i =,2, ,n + V + ,

and we let r nV(z) be the rational function of the form

S (z)

(2.6) r (z; F) (z) n,V p E Tn ET '  monic,
n,v n,V qn,(z)' n,v n n,v V n,v

which interpolates F(z) in the n + v + 1 points Uin+V)n  +l

(2.7) ( (n+v1) = Fin+v)j i = 1, 2, ", n + v + 1.
n,v i i

In the tableaus (2.2) and (2.3), we do not require that the entries in

any particular row consist of distinct points. In the case of repeated

points, interpolation in (2.5) or (2.7) is understood to be taken in the

Hermite (derivative) sense.
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Unlike polynomial interpolation, the existence of the above rational

interpolants is by no means assured without further assumptions on the

behaviors of the triangular schemes. Also, to establish a theorem

(analogous to Theorem A) which asserts that the difference r n,v(r)- r (z)n rvn,V~ z

tends to zero in some "large" region, we need to assume that the tableaus

(2.2) and (2.3) are, in some sense, "close" to one another.

To specify these assumptions, set

n+l (n) n+ l °n
(2.8) w (z):= -(z n ; n(z) II (z ), w 1 (z)= .(z):- 1.

J=l j=l

Concerning the triangular scheme (2.2), we suppose that

(2.9) lim lW(Z) n - A exp G(z),

n-w

uniformly in z on each closed bounded subset of K, where A is the

transfinite diameter (or capacity) [8, §4.43 of E. We remark that the
(n)

existence of some triangular scheme [5jn ) for E for which (2.9) holds,

well-known; for example, on defining the tableau DS(n ) I to consist of

the Fekete points for E, then (2.9) holds (cf. [8, p. 1723). Next, since

each w (z) in (2.8) is monic of precise degree J+l, there are unique

constants Y V(n), 0 J: 5 n, such that

n

(2.10) n (Z) = Wn (Z) + r, Y i(n)wi-l(Z), Y na 2I.
J=O

For p fixed, we assume (as in Cavaretta, Sharma, and Varga [2, 103) that

there exists a constant X, with -m :- X < 1, such that

n , 1l/n
(2.11) lim sup" E yj(n)lI (p) < AP% (< ap),

n - Ce J.0

where A is the transfinite diameter of E. With the above assumptions, we

can show that, for each F E M(E P; v) and for each n sufficiently large,
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the rational interpolants r n,V(z; F) and n,v(z; F) of F(z) in (2.5) and

(2.7) do indeed exist and are unique. Our main result is

Theorem 2.1. Let p be fixed with 1 < p < -, and suppose that the tableaus

(2.2) and (2.3) have no limit points exterior to E and satisfy the

conditions (2.9) and (2.11). If F E M(Ep V), V 0, and if {jj are the

v poles of F in E \E (listed according to multiplicity), then the rational

interpolants r (z; F) of (2.5) and 7 (z; F) of (2.7) satisfyieronsrn,v _- n,V

V
(2.12) lim [7 n,(z; F) - r n,(z; F)]f-iO, V zEE 2 - \ U lot 1

k. 12 v J1=l

the convergence ben uniform and geometric on any closed subset of

E )_U . More precisely, on any closed subset 9 of any U (o

p j=l J=l

with p < T < -, there holds

~ lre ~ 1/n 2-XL
(2.13) li m supmax 17n,V(z; F) - rn,v(z; F)l n <  pr/p

n - ca zE i

We remark that while the rows of tableau (2.2) are defined for every

n = 0, 1, 2, --- , the tableau of (2.3) need only be defined for some

infinite increasing subsequence of nonnegative integers n, and the

conclusions (2.12) and (2.13) of Theorem 2.1 remain valid for that sub-

sequence. As we shall see in §3, this observation will be useful in

studying Hermite interpolation.

Essential to the proof of Theorem 2.1 is the following extension,

due to Saff [5], of the Montessus de Ballore Theorem [3].

Theorem B. Suppose that F E M(E p; v) for some 1 < p < -, and v 0,

and let *Ij IV , denote the v poles of F in E\E. Suppose further that

the points of the triangular scheme



b

b;I)  b21 )1 2

(2.14) . . . . . .

(n) ., (n)

n ' 2 ' n+l

. . . . . . . . . . .

(which need not be distinct in any row) have no limit points exterior to

E, and that

n+l (n) 1/n
(2.15) irn I m (z - b = A ,xp G(z),

o-m i

uniformly on each closed and bounded subset of K. Then, for all n

sufficiently large, there exists a unique rational function s (z)

of the form

gnmv (z )

(2.16) Sn = ( E r h E Tr,,, h monic,nV h n, () gn,v n n,v n,

which interpolates F(z) in tune points b(n+v) b(n+V) b(n++V)

_ _ _ _ _ _ __ _ _ _ _' 2 ' ' n + i"

Each s n,v (z) has precisely v finite poles, and as n - , these poles

approach, respectively, the v poles of F(z) in E \E. The sequence
V

S (Z) converges to F(z) on E \U f,_ uniformly and geometrically
n,v nn 0  PJ

on any closed subset of E \ V [cjA" 1ore precisely, on any

V

closed subset A of any E\ U (e with 1 < T < p, there holds
T j=l

(2.17) lim sup (max IF(z) - s nv(z)Ln < r/0.
n - c zEn '

Theorem B in particular implies that the monic denominator polynomials

of the s (z) satisfy

(2.18) lira h (z) = TI (z - yi)=: B(z),
n,v i (

n G =
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uniformly on each compact -,t of the plane. In the proof of Theorem 2.1,

we also need the following quantitative property.

Lemma 2.2. With the hypotheses of Theorem B, suppose that F(z) has a pole

of order m(- v) at at, where aj Ef . (Ca < p). Then (cf. (2.16)),
1dk II/n J

(2.19) lim sup k hnv (a ) < aj/p, for each k = 0, 1, "', m-l.

n- -Idz

Proof. With B(z) as defined in (2.18), the function f(z):= B(z)F(z) is

analytic throughout E p, and is nonzero at each point tis i = , ', V.

On multiplying F(z) - s n,v(z) by B(z) h n,v(z), it follows from (2.17) and

(2.18) that, for each r with 1 < r < p, there holds

(2.20) lim sup (max jf(z)h n,,(z) - B(z)gn,V (z) l/n < "r/p
n- zEF n

More generally, on setting

D (z):= f(z)h (z) B(z)g (z),
n n,v

so that D (z) is analytic throughout E it follows from (2.20) and

n

Cauchy's formula that, for each nonnegative integer k,

kd I /n
(2.21) lim sup (max id k D (z) '3 5 T/P, for I < T < P.

n zEF dzk n
T

Since 0 0, then taking z = . and = in (2.20) yields

lim sup I f(U )h n,v(0e  /n < j/p,

and since f(ci) # 0, inequality (2.19) follows for the case k = 0. For

k = 1, ---, m-1, inequality (2.19) is easily proved by induction, using

the moi'e 1,elneral estimates of (2.21), the Leibniz formula for differentiating

products, and the fact that B (j) = 0 for k 0, 1, .. , m-l.
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As a consequence c f (2.19), on expanding each h n,v(z) in terms of a

fixed Lagrange basis of polynomials, there holds on each compact set

jj C C

(2.22) lim sup fmax 1hn'V(z) - B(z)JI 1/n-- ( max oi)/P ,
n m zE 'V

where ot E r a for each i - 1, ''', v.

It is clear from the hypothesis (2.9) of Theorem 2.1 that the results

of Theorem B and Lemma 2.2 apply to the triangular scheme of (2.2). The

next lemnma establishes that the same is true for the triangular scheme of

(2.3).

Lemma 2.3. With the hypotheses of Theorem 2.1, the polynomials 7n (z) of

(2.8) satisfy

(2.23) lim p n(z) I1/n - A exp G(z),

uniformly in z on each closed bounded subset of K.

Proof. By assumption, the zeros of the polynomials Z (z) have no limit

n

point exterior to E. Hence, on each compact set in K, the harmonic

functions - log j;n(z)l are, for n sufficiently large, uniformly bounded,
n n

and so they form a normal family in K. Now, let R be any fixed number

with maxfl, p k < R < p. Since from (2.9),

lim [max 1w.(-) ]1 ' = A R < Ap,jcczEr R"

it follows from the assumption of (2.11) that

n n 1/n
lim sup mAx Z p~(n) l11w-I(z) 1 : ~AP X < AR,

n # Er Rj=oR
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and hence (cf. (2.10)), we have

(2.24) lim [max lrn(z)1 n = rlin [max Iwn(Z)13 I / n = AR.
n-- zEFR n-9 zEF R

Noting that 6R is the transfinite diameter of ER, the result of (2.24)

implies, by a theorem of Walsh [8, Theorem 4, p. 1633, that

(2.25) lim I logj7n(z)1 log A + G(z),

uniformly on each compact set exterior to r R . But, as the functions

!-log 1(Z) form a normal family in K, then (2.25) necessarily holds
n n

uniformly on each compact set in K, which gives (2.23).

We can now give the

Proof of Theorem 2.1. By Lemma 2.3 and the assumption of (2.9), it

follows from Theorem B that, for each n sufficiently large, the rational

interpolants r nV(z) of (2.5) and n,v(z) of (2.7) exist and are unique.

Furthermore, the monic denominator polynomials q n,V(z) and n'V(z)

satisfy

V
(2.26) lim q n,v(z) = lim n,v (z) = 11 (z - ai)=: B(z),

c n-. co i=l

uniformly on every compact set of the plane.

Next, for convenience, set

(2.27) Jn(z):= qn,v (2)n,v(z)F(Z).

Since r (z) interpolates F(z) in the points (8(n+v),n+v+l from (2.5),
nv i i=l

it follows, on multiplication by qn'V(Z) n, (z), that n,v(z)pn,v (z) is

the unique polynomial in Tl which interpolates J (z) in these n+v+ln+V n
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points. Similarly, q n,V(z)n,V (z) is from (2.7) the unique polynomial

in rn+V which interpolates Jn (z) in the points $i(n+v)n+ Since

F(z) is, by hypothesis, analytic on E, there exists a constant > 1

such that F(z) is analytic on and interior to the level curve F I. Then,

for each n sufficiently large, Hermite's formula gives

Ew (t)-w (z) J (t)dt
(2.28) ~ zp ~ 1n+v n+V n zEC2n,v fZ)pn,v z) 2 i . w (t) (t - z) , Z E c,

and

1 E n+V(t) -n+V(z)3 in(t)dt

(2.29) q n,v( (z) 2i - . n+(t) - Z)

r n+v

On subtracting, we have

S Kn(t, z) Jn(t)dt
(2.30) in,v (Z)pn, (z) - q (z)n ,(z) 2-i J w + (t)'n + (t) (t-z)'

where

(2.31) K n(t, z): w n+V(t); n+(z) - wn+V (Z)z n+V(t).

Next, let (ej
1 j=l, s - v, denote the distinct poles of F(z) in E \E,

5 *= V=XP

so that U ra*r = (a I. Let R be any constant such that max(l, p 1<R<P
j=l J=l -

and such that all the poles of F(z) lie interior to FR . Further, select s

small circles C 1:= (t E C It - *= which are mutually exterior and

satisfy C1  ER\E for each j = 1,2, *", s. Setting C8+ 1 : F'R, then

Cauchy's theorem applied to the integral of (2.30) gives, for all n

sufficiently large, that

s+l

(2.32) n (Z)p (z) - qn(Z)n (Z) n I (z),nv nv nV nv j=l
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where

(2.33) (n)( 1 K (t, z) Jn(t)dt
2i w Wn+V (t)n+V W)(t-z1

In (2.33), the contour Cs+ 1 is taken to be positively oriented, while the

remaining contours Cj, I < J -a, are all negatively oriented.

To estimate the integrals in (2.33), we first note that using (2.10)

we can express K n(t, z) as

n+V

(2.34) K(t, z) f  Yi(n+v[wn+v (t)wi (z) - wn+v(z)wi I(t)].
1=0

From the hypotheses (2.9) and (2.11), it then follows that, for each

7. : P

lim sup (maxlK (t, z)j : t E r z E r 11/n < A2 PX
'n zjR' OT

and from (2.9) and (2.23) we have

lim [minw n+ (t);nD (t)l : t E FR]I = (AR)2.
n-.o

Further, we note from (2.26) and (2.27) that the functions J n(t) are

uniformly bounded (independent of n) on the contour Cs+ I  FR. Putting

the above facts together yields from (2.33) that

(2.35) lim [maxl +1 (z) I E r r rl/n p I/R2, P.

Next, to estimate the integrals around the poles oc, we note that

for each = 1, 2, -, s (n) (z) is just the negative of the residue

at t *y of the function

... ... . ..... . . IIIIIII1 -- Ir... ..... I .. .. : ,, ... .. ... . .....,.r ... .. .- "j..
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Kn(t, Z) Jn(t)
(2.36) wn (t)n+ (t) (t-z)"

n+V n+V

If E r , then it follows from (2.9), (2.11), (2.23),and (2.34) that for
a

each k = 0, 1,

(2.37) limn sup [max i-k Kn(=j; z): z E r]l/n _S 62 PX T Z P,

and

(2.38) limn sup (t) ; (t) Nl /(A) at t C.
*n- jdt kwn+V(t2 n +V() I

Furthermore, if aj is a pole of F(t) of order m, then from Lerma 2.2 we

have, for each k = 0, 1, .. , M-i,

lim sup (k)* 1/n < /P. urn sup .(k) (y*)l/n :5<* 1/
n' -4 Cc n,% n n-P

and, consequently, for such k

(2.39) lim sup [ n(t)(t. )m] 1/n< at t =f
n -- tJ*

On combining (2.37), (2.38), and (2.39) to estimate the residue at t =

of the function in (2.36), we find that, for each j 1, 2, ..., s,

(2.40) lim sup [waxI (n)(z :zEr] 1/n < I T P.

Thus, from (2.32) and the estimate of (2.35), it follows that

lim sup [max I1n,v(Z)pn,v (z) - qnV(z)%,V (z)1 ]3/n < TP/R 2, 7 P,
n-. zEF

and so, on letting R approach p and applying the Maximum Principle, we

have



16

(2.41) rn sup [max 0 nv (z)pn'v (z) - qn,V (z) nv (z) 1)/n -< :7 P2-% 'X r

Finally, appealing to the equations (2.26), the desired conclusions (2.12)

and (2.13) of Theorem 2.1 then follow.

Corollary 2.4. With the hypotheses of Theorem 2.1, there holds on every

compact set X C C,

(2.42) lin sup [max i n,v(z) - q n,v(z) /n- /p1 'A-
n-.m zEN

Proof. Since ! ,', (z) and q n,(z) are, for n large, each monic polynomials

of degree v, the difference dn (z):= n,v(z) - q n,v(z) is a polynomial of

degree at most v-1. Moreover, dn (z) is the unique polynomial in "-1

which interpolates the function

(2.43) Gn(z):, (n,,(z)pn,v(z) - qn,V (z) ,V(z))/pn,V(z)

in the v zeros of qn,V(z). From Theorem B (cf. (2.26)), these zeros

approach, respectively, the V poles of F(z) in EP \E. Also, as

(2.44) lim pnV (z) = B(z)F(z)=: f(z),

n-0 c

uniformly on compact subsets of Ep, and as f(z) is analytic and different

from zero in each pole of F(z), then there exist s small circles

C Iz - a I = 6j, J 1, ", s (as in the proof of Theorem 2.1) such

that for n sufficiently large, pn,v (z) is different from zero on the closed

interior of each C . Consequently, for n large, the function Gn(z) is

analytic inside and on each Cj, j - 1, "--, s. Since the zeros of qnv(z)

will eventually all be contained in the union of the interiors of the

circles Cj, Hermite's formula again gives
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s (q n~v (t) - q nV(z))G n(t)dt

(2.45) d n (q (t)(t - Z) V z E(245 d(Z =  ~lC. qn,V

where now the integration is taken in the positive sense around each C..3

But, from (2.44) and from (2.41) with r = p, we have for 1:- J:5 s,

Un sup [max. n (t)<1 /nlim sup[max 1n,v (t)PnVt(t) nsv(t)1 1/n
n -. tEC n - -tEcj~

<p/p = 1/p

Using this estimate together with the limiting behavior (2.26) of the

polynomials qnsV(z), it follows from (2.45) that

lim sup [max Id n(z)j13/n /<

n- z EX

where )i is any compact set in the plane, which establishes (2.42).

If only the triangular interpolation schemes are specified, but not

the point set E, then D. D. Warner has shown [9] that, under rather

mild regularity conditions, the schemes determine a geometric setting in

which Saff's Theorem B remains valid. Such assumptions lead to further

generalizations of Theorem 2.1.

§3. Some Examples

In this section, we discuss some special cases of Theorem 2.1 and

Corollary 2.4. We begin with the results quoted in the introduction

concerning rational interpolation in the origin and in the roots of unity.

Example 1. Let E be the closed unit disk Izj : 1, so that E has capacity
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A = 1. The associated Green's function is then simply G(z) = log Jzj, and

the level curves Ir are the circles Izi - a. Next, select the n-th rows

of the tableaus (2.2) and (2.3) to consist, respectively, of all zeros

and of the (n+l)-st roots of unity; that is, with the notation of (2.8),

n+l n+l
(3.1) w (z) = z , (z) z .n n 1

Trivially, wn(z) satisfies (2.9) and, furthermore, the inequality of (2.11)

is valid, for every p > 1, with X - 0. Thus, Theorem 2.1 gives the

conclusions (1.10) and (1.11) of Theorem 1.1, provided that F(z) E M Mv)

has all of its v poles exterior to E: lzt S 1. However, slight modifications

in the proof of Theorem 2.1 show that, for these special interpolation

schemes, we can indeed allow some or all of the V poles of F(z) to lie

in the punctured disk 0 < JzJ < 1, and this will not effect the validity

of Theorem 2.1.

Next, we establish the sharpness assertion (1.12) of Theorem 1.1.

For any given p with I < p < -, and any fixed complex e with 0 < 100 < P,

Joe # 1, the particular meromorphic function

1 1
(3.2) F(z):f -- + -p

is evidently an element of M P(1). Because V-:l in this example, the

associated interpolants (cf. (1.6) and (1.8)) of F(z) are

U 1 (z)
S n(z; F) - Vnl(z), and R nj(z; F) Qn,l (Z) ,

where we write

Vn (z) = z + X and Q -z + Yn

It can be verified that
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01P~~~ ~ ~ no an2P-P-aPnl+an+t1
(3.3) xn+2 npot2 n

n 2 - -Cn +

and that

P V n 1 ( P) ( z n " + l  a n, I ( ) ( z n+l " n+l
Un ()= 2 p n()Z - )~ V(Oz -

U (z) 2 + -(--=L - l)z
n (pn+21) (z -p) n+2 ) (Z

(3.4) Pn, l(Z) n2 n- (P)(Zn+l -Pn+l) Qn1(Y)(zn+1 o n+l

(z)= n-i- (z-lnI p (z - p) n+i (z - Y)

Note that since p > I01, both )n and Yn tend, from (3.3), to -y as n-m.

This, of course, implies that the poles of Sn,i (z; F) and Rnj (z; F) both

tend to c as n- -, which is in agreement with Theorem B. Using (3.3) and

(3.4), straight-forward (but lengthy) calculations give

n+2
(3.5) S (z; F) -R (z; F) - Z o--) (-2)+ a ) as n-=,

njl njl P2n44 (Z-) 3 (z - p)

the last term holding uniformly on any bounded set in C\(fC1 U (p)). From

this, it follows that

(3.6) lrn fmin 2S (z; F) - R,(z; F')3.4 cc 2 Sn, 1

2 2 10 - 2o2eie ! [P- 2 (2o2" -Ial)
min 2 e-3 2e i e '  2 + 3.2+ > .

Thus, for the particular function F(z) of (3.2), we see that (3.6)

implies (1.12) of Theorem 1.1, for the case v=l. It thus remains to

establish (1.12) for any integer v 2 and any 1 < P < -. This is done

by using the previous construction as follows.

Let us regard the function (z) of (3.2) as a function of z, 0', and

p, i.e., F(z) = F(z; a, p). For any p with 1 < p < a, and for any
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positive integer V, we set

(3.7) F (z):= F(z ; a + + E m PM

Vz -a z -p

where, as in (3.2), 0 < (al < P and lal 1. Then, the rational

interpolants S (z; Fz; and R n (z; FV) of F. are easily seen to be

related to the rational interpolants S n,1 (z; F) and Rn, (z; F) of F

as follows:

( AVAV V

S mlv~~(z F) S 5 (z ;F(.;

R (M+l)V-,V(z; FV) Rml (z; F('; a, p )), m- 1, 2,

Because of the relationships of (3.8), it follows from (3.6) that

liin mi IS( +I)V.I, V (z; F ) - R (m+l)v. ' V(Z; FV)l3

2v Vo 2v

( + I( + I) 3 (+2v + p )

and hence

lira sup min 2 n,v (z; F) - Rfn,v (z; rvJI > 0,

for each positive integer v, and each p with 1 < p < *. This completes

the proof of the sharpness assertion of Theorem 1.1.

Finally, we remark that Corollary 1.2 is an immediate consequence

of Corollary 2.4 with X - 0.

EDample 2. If we wish to compare (Pads) rational interpolation in the



origin with Hermite rational interpolation of order k(2 2) in the roots

of unity, we again take E to be the closed unit disk and we set

WnI (): n -k - l k'

,z n 1 2, "; l(Z):= (zm _),m =1, 2,

Then, it can be verified that the inequality of (2.11) (with n = km)

holds for every p > 1 with X = I - I/k. Thus, Theorem 2.1 (modified to

allow poles in the punctured disk 0 < Izi < 1, as discussed in Example 1)

gives for any F E M (v),

(3.9) lim Sk-I-_, .(z; F) -Rkm._, (z; F)=0, Y zED 1
+
1
/k\ [Uf'c1

where S-l- , (z; F) is the rational function of type (km-l-v, v) which

interpolates F(z) in the m-th roots of unity, each considered of

multiplicity k, and where R (z; F) is the corresponding Pade

approximant to F(z). We note that the result (3.9, for the case v = 0

appears as the case A = 1 in Cavaretta, Sharma, and Varga [2, Theorem 31.

Example 3. Here we take E to be the real interval [-1, 1), which has

capacity A = 1/2. The level curve r (a > 1) for E is the ellipse ina

the z-plane with foci + 1, and semi-major axis (a + 1/0)/2. With

T (X) = cos(n arc cos x) denoting the familiar Chebyshev polynomial (of
n

the first kind) of degree n, we shall compare Lagrange interpolation in

the Chebyshev zeros witth Hermite interpolation of order k ( 2) in

these zeros. For this purpose, we define (cf. (2.8)) the monic polynomials

w n(z):= 2  n (z), n--1,2, ""; kmI(z):- (21mTm (z)) , m = 1, 2,

It is well-known (cf. [8, p. 163)) that the w (z) satisfy (2.9), andn
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moreover, it can be verified that the inequality of (2.11) (with

n = an - 1) holds with X = (k-2)/k for every p > 1. Hence, if F(z) is

analytic on [-1, 1] and meromorphic with precisely V poles (Ce I

inside the ellipse Fr (i.e., F E M(E p; v)), then Theorem 2.1 gives

(3.10) lir km-l-v, (z F) - rkm.lv ,(z; F) = 0, V z E E 2) .m= COp J=l

As a special case, we see that the choice k 2 gives convergence to zero
V

in E 2\ U (o. which is reminiscent of the result of Theorem 1.1.
p J=l '

(containing more than one point) whose
Example 4. Let E be a closed bounded point set

complement K is simply connected, and let 3 n(z), for n = 0, 1, -- , denote

the Faber polynomials [6, Chap. 2] for E. For simplicity, we assume

that E has capacity 6 = 1. If w = p(z) maps, one-to-one and conformally,

the complement K onto the domain Iwj > 1 so that cp(-) = m, then 3 (z) is

the principal part of the expansion of 4(z)]nas a Laurent series in a

neighb-rhood of z = =. Specifically, if

c 1  c-2
(3.11) P(z) = z + Co + -z

z

in a neighbornfood of z = , then

() + c(n)

(3.12) r (z)]n = zn + c(n) n-l + (n) n-2 + + c(n) _-: + -2 +U n-l n-2 0 z 2
z

and, by definition,

zn  c(n) n-l (n)
(3.13) (z):= Z + cn) z + .. + . + n = 0, 1,

n'n-l 0

It is kown that the zeros of 3 (z) have no limit points in K and, moreover

n

(cf.- [6, p. 135)
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(3.14) lim n(Z) I /n = IP(z)(,

uniformly on each compact set in K. Choosing the interpolation scheme

of (2.2) to consist of the zeros of the Faber polynomials (i.e., setting

Wn(z):= 5n(z)), then the condition of (2.9), with G(z) = logj P(z),, is

clearly satisfied. For a comparison scheme, we consider Hermite interpolation

of order 2 in these Faber polynomial zeros, i.e., we set

(3.15) 2ml(z):= [ (z)]2 , m = 1, 2,

Now, if z = *(w) denotes the inverse of the function q,(z), we have

(cf. [6, p. 138])

2 2m
(3.16) [3 (z)J : a. ) 3 (z),mJ=O

where, for any r > 1,

2

( 3 .1 7 ) a ( i ) 
A 1 

d wm=*( ', 
i2

3 2T i +1 d w , J 0 , 1 , 2m .

Now, it is known [6, p. 1323 that

(3.18) 3 (Ww)) = +IM1) Yw>1,m W M , " > i

where Mm (1/w) is analytic at w = - and has a Laurent series converging

for all wi > 1. Substituting (3.18) in (3.17) gives

(3.19) a(m) = - r + m dw, j = 0, 1, " 2m.3.19 i i w J+I

From this, we immediately see that

(3.20) a(M ) = I; (m) = 0 for m 5 j < 2m.
2m aj_
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Next, we estimate the remaining coefficients -(m) 0 < j < m. For

0 < j < m, we have from (3.19) that

2w(n- 1 MCMdw
(3.21) aj , 2- w J+l 0 5 j < m.

lwlI-r

I . (m) -k
Writing 1 ) - k w for all IwI > 1, then it is evident that

k-O

(3.22) aj - -l 0-j<M.

Let 1 < a < p. Then, we can obviously write

(3.23) (m) 1 -j-l ( M -)Idw.im-j-l 2fU J M )  "

From [6, p. 134, inequality , Mmb(m ) " ()ai for jwl a, where "(d)

is a positive constant, independent of m. Thus, from (3.23),

S (M) 1. 5I ()c2 , 0 5j < M.JYM-J -l

Hence, from (3.20) and (3.22), we have

2m-1 M-1 1J/2

(3.24) lim sup 2wi a(i) IPJl/2 lm sup la 1/
M- 4 O J.0 m j W J.0

m-i 2m 1/2m

-- li sup (Z(a) E a p / -

Letting a tend to unity, we see that for n - 2m - 1, inequality (2.11)
IL~ 1

holds with X = - (since A - 1). In a similar (but more tedious fashion),

it can be shown that if we consider Hermite interpolation of order k (e 2)

in the zeros of the Faber polynomials, i.e., (cf. (3.15)) if

(3.25) Zkm_1(z):_ (3 m(z)3 k , m = 1, 2, ..
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and (cf. (3.16)) if

(3.26) [(z)]k:= a (k) j.(z),

J=O j

then (3.24) can be generalized to

km-1l pJ I k n  (p-aIk(3.27) lir sup (a)(k)Ipi lfkm (k-1 0)1/k,

00- 1
jWOJ

so that on letting (7 again tend to unity, we see inequality (2.11) now

holds with X - 1 - I/k. In other words, Theorem 2.1 gives for any

F E M(E ; v)

pV

(3.28) lim 'km-l-V, V F) - typeV, V(z; F)) = 0, V z E

where Skm-l-V, v F) is the rational function of type (km-l-v, v)

which interpolates F(z) in the zeros of the Faber polynomial 3km(z),

while Rkm__V V (z; F) is the rational function of type (km-l-v, v) which

interpolates F(z), with multiplicity k, in each of the zeros of the Faber

polynomial 3m (z).

Finally, although the set E = [-1, +1] of Example 3 is a special

case of Example 4, we note however that the comparison of Lagrange

interpolation in the zeros of the Faber polynomial mk(z), with that of

Hermite interpolation of order k in the zeros of the Faber polynomial

3m(Z), gives the associated exponent (cf. (2.11)) of Example 3 as

X k --2 ,which is smaller than the associated exponent X' = -k- of

Example 4.
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